DISCLAIMER - NIKZAFRI.BLOGSPOT.COM

Today, Knowledge Management today are not limited merely to : (A) 'knowing' or 'reading lots of books/scholarly articles' or (B) data mining, analysis, decision making, preventive actions, or (C) some Human Resources Management issue or (D) some ICT issue. Knowledge Management is about putting your knowledge, skills and competency into practice and most important IT WORKS! For you and your company or your business (Nik Zafri) Can I still offer consultancy or training? Who claims otherwise? Absolutely, I can.

The information comprised in this section is not, nor is it held out to be, a solicitation of any person to take any form of investment decision. The content of the nikzafri.blogspot.com does not constitute advice or a recommendation by nikzafri.blogspot.com and should not be relied upon in making (or refraining from making) any decision relating to investments or any other matter. You should consult your own independent financial adviser and obtain professional advice before exercising any investment decisions or choices based on information featured in this nikzafri.blogspot.com can not be held liable or responsible in any way for any opinions, suggestions, recommendations or comments made by any of the contributors to the various columns on nikzafri.blogspot.com nor do opinions of contributors necessarily reflect those of http://www. nikzafri.blogspot.com

In no event shall nikzafri.blogspot.com be liable for any damages whatsoever, including, without limitation, direct, special, indirect, consequential, or incidental damages, or damages for lost profits, loss of revenue, or loss of use, arising out of or related to the nikzafri.blogspot.com or the information contained in it, whether such damages arise in contract, negligence, tort, under statute, in equity, at law or otherwise.


MY EMPLOYERS AND CLIENTELLES



BIODATA - NIK ZAFRI


 



NIK ZAFRI BIN ABDUL MAJID,
CONSULTANT/TRAINER
Email: nikzafri@yahoo.com, nikzafri@gmail.com
https://nikzafri.wixstudio.com/nikzafriv2

Kelantanese, Alumni of Sultan Ismail College Kelantan (SICA), Business Management/Administration, IT Competency Cert, Certified Written English Professional US. Has participated in many seminars/conferences (local/ international) in the capacity of trainer/lecturer and participant.

Affiliations :- Council/Network Member of Gerson Lehrman Group, Institute of Quality Malaysia, Auditor ISO 9000 IRCAUK, Auditor OHSMS (SIRIM and STS) /EMS ISO 14000 and Construction Quality Assessment System CONQUAS, CIDB (Now BCA) Singapore),

* Possesses almost 30 years of experience/hands-on in the multi-modern management & technical disciplines (systems & methodologies) such as Knowledge Management (Hi-Impact Management/ICT Solutions), Quality (TQM/ISO), Safety Health Environment, Civil & Building (Construction), Manufacturing, Motivation & Team Building, HR, Marketing/Branding, Business Process Reengineering, Economy/Stock Market, Contracts/Project Management, Finance & Banking, etc. He was employed to international bluechips involving in national/international megaprojects such as Balfour Beatty Construction/Knight Piesold & Partners UK, MMI Insurance Group Australia, Hazama Corporation (Hazamagumi) Japan (with Mitsubishi Corporation, JA Jones US, MMCE and Ho-Hup) and Sunway Construction Berhad (The Sunway Group of Companies). Among major projects undertaken : Pergau Hydro Electric Project, KLCC Petronas Twin Towers, LRT Tunnelling, KLIA, Petronas Refineries Melaka, Putrajaya Government Complex, Sistem Lingkaran Lebuhraya Kajang (SILK), Mex Highway, KLIA1, KLIA2 etc. Once serviced SMPD Management Consultants as Associate Consultant cum Lecturer for Diploma in Management, Institute of Supervisory Management UK/SMPD JV. Currently – Associate/Visiting Consultants/Facilitators, Advisors/Technical Experts for leading consulting firms (local and international), certification bodies including project management. To name a few – Noma SWO Consult, Amiosh Resources, Timur West Consultant Sdn. Bhd., TIJ Consultants Group (Malaysia and Singapore), QHSEL Consultancy Sdn. Bhd.

He is also currently holding the Position of Principal Consultant/Executive Director (Special Projects) - Systems and Methods, ESG, QHSE at QHSEL Consultancy Sdn. Bhd.* Ex-Resident Weekly Columnist of Utusan Malaysia (1995-1998) and have produced more than 100 articles related to ISO-9000– Management System and Documentation Models, TQM Strategic Management, Occupational Safety and Health (now OHSAS 18000) and Environmental Management Systems ISO 14000. His write-ups/experience has assisted many students/researchers alike in module developments based on competency or academics and completion of many theses. Once commended by the then Chief Secretary to the Government of Malaysia for his diligence in promoting and training the civil services (government sector) based on “Total Quality Management and Quality Management System ISO-9000 in Malaysian Civil Service – Paradigm Shift Scalar for Assessment System”

Among Nik Zafri’s clients : Adabi Consumer Industries Sdn. Bhd, (MRP II, Accounts/Credit Control) The HQ of Royal Customs and Excise Malaysia (ISO 9000), Veterinary Services Dept. Negeri Sembilan (ISO 9000), The Institution of Engineers Malaysia (Aspects of Project Management – KLCC construction), Corporate HQ of RHB (Peter Drucker's MBO/KRA), NEC Semiconductor - Klang Selangor (Productivity Management), Prime Minister’s Department Malaysia (ISO 9000), State Secretarial Office Negeri Sembilan (ISO 9000), Hidrological Department KL (ISO 9000), Asahi Kluang Johor(System Audit, Management/Supervisory Development), Tunku Mahmood (2) Primary School Kluang Johor (ISO 9000), Consortium PANZANA (HSSE 3rd Party Audit), Lecturer for Information Technology Training Centre (ITTC) – Authorised Training Center (ATC) – University of Technology Malaysia (UTM) Kluang Branch Johor, Kluang General Hospital Johor (Management/Supervision Development, Office Technology/Administration, ISO 9000 & Construction Management), Kahang Timur Secondary School Johor (ISO 9000), Sultan Abdul Jalil Secondary School Kluang Johor (Islamic Motivation and Team Building), Guocera Tiles Industries Kluang Johor (EMS ISO 14000), MNE Construction (M) Sdn. Bhd. Kota Tinggi Johor (ISO 9000 – Construction), UITM Shah Alam Selangor (Knowledge Management/Knowledge Based Economy /TQM), Telesystem Electronics/Digico Cable(ODM/OEM for Astro – ISO 9000), Sungai Long Industries Sdn. Bhd. (Bina Puri Group) - ISO 9000 Construction), Secura Security Printing Sdn. Bhd,(ISO 9000 – Security Printing) ROTOL AMS Bumi Sdn. Bhd & ROTOL Architectural Services Sdn. Bhd. (ROTOL Group) – ISO 9000 –Architecture, Bond M & E (KL) Sdn. Bhd. (ISO 9000 – Construction/M & E), Skyline Telco (M) Sdn. Bhd. (Knowledge Management),Technochase Sdn. Bhd JB (ISO 9000 – Construction), Institut Kefahaman Islam Malaysia (IKIM – ISO 9000 & Internal Audit Refresher), Shinryo/Steamline Consortium (Petronas/OGP Power Co-Generation Plant Melaka – Construction Management and Safety, Health, Environment), Hospital Universiti Kebangsaan Malaysia (Negotiation Skills), Association for Retired Intelligence Operatives of Malaysia (Cyber Security – Arpa/NSFUsenet, Cobit, Till, ISO/IEC ISMS 27000 for Law/Enforcement/Military), T.Yamaichi Corp. (M) Sdn. Bhd. (EMS ISO 14000) LSB Manufacturing Solutions Sdn. Bhd., (Lean Scoreboard (including a full development of System-Software-Application - MSC Malaysia & Six Sigma) PJZ Marine Services Sdn. Bhd., (Safety Management Systems and Internal Audit based on International Marine Organization Standards) UNITAR/UNTEC (Degree in Accountacy – Career Path/Roadmap) Cobrain Holdings Sdn. Bhd.(Managing Construction Safety & Health), Speaker for International Finance & Management Strategy (Closed Conference), Pembinaan Jaya Zira Sdn. Bhd. (ISO 9001:2008-Internal Audit for Construction Industry & Overview of version 2015), Straits Consulting Engineers Sdn. Bhd. (Full Integrated Management System – ISO 9000, OHSAS 18000 (ISO 45000) and EMS ISO 14000 for Civil/Structural/Geotechnical Consulting), Malaysia Management & Science University (MSU – (Managing Business in an Organization), Innoseven Sdn. Bhd. (KVMRT Line 1 MSPR8 – Awareness and Internal Audit (Construction), ISO 9001:2008 and 2015 overview for the Construction Industry), Kemakmuran Sdn. Bhd. (KVMRT Line 1 - Signages/Wayfinding - Project Quality Plan and Construction Method Statement ), Lembaga Tabung Haji - Flood ERP, WNA Consultants - DID/JPS -Flood Risk Assessment and Management Plan - Prelim, Conceptual Design, Interim and Final Report etc., Tunnel Fire Safety - Fire Risk Assessment Report - Design Fire Scenario), Safety, Health and Environmental Management Plans leading construction/property companies/corporations in Malaysia, Timur West Consultant : Business Methodology and System, Information Security Management Systems (ISMS) ISO/IEC 27001:2013 for Majlis Bandaraya Petaling Jaya ISMS/Audit/Risk/ITP Technical Team, MPDT Capital Berhad - ISO 9001: 2015 - Consultancy, Construction, Project Rehabilitation, Desalination (first one in Malaysia to receive certification on trades such as Reverse Osmosis Seawater Desalination and Project Recovery/Rehabilitation), ABAC Centre of Excellence UK (ABMS ISO 37001) Joint Assessment (Technical Expert)

* Has appeared for 10 consecutive series in “Good Morning Malaysia RTM TV1’ Corporate Talk Segment discussing on ISO 9000/14000 in various industries. For ICT, his inputs garnered from his expertise have successfully led to development of work-process e-enabling systems in the environments of intranet, portal and interactive web design especially for the construction and manufacturing. Some of the end products have won various competitions of innovativeness, quality, continual-improvements and construction industry award at national level. He has also in advisory capacity – involved in development and moderation of websites, portals and e-profiles for mainly corporate and private sectors, public figures etc. He is also one of the recipients for MOSTE Innovation for RFID use in Electronic Toll Collection in Malaysia.

Note :


TO SEE ALL ARTICLES

ON THE"LABEL" SECTION BELOW (RIGHT SIDE COLUMN), YOU CAN CLICK ON ANY TAG - TO READ ALL ARTICLES ACCORDING TO ITS CATEGORY (E.G. LABEL : CONSTRUCTION) OR GO TO THE VERY END OF THIS BLOG AND CLICK "Older Posts"


 

Saturday, August 02, 2025

MY SITE DIARY - 30 SHORT STORIES - CONSTRUCTION - NIK ZAFRI

 

No. 1

2022 - just after the MCO

Retaining Wall Drainage Design

At a hillside residential construction site, the project engineer proposed using a standard weep hole system for the newly constructed retaining wall. He believed that since the soil was not clay-heavy, natural percolation combined with weep holes would suffice to manage hydrostatic pressure.

However, based on my past experience with similar terrain during monsoon seasons, I foresaw a risk of water accumulation that could compromise the wall’s stability over time. Instead of dismissing his idea, I acknowledged that the weep hole system could work under ideal conditions, but I asked him:

“What if we consider combining your approach with a perforated sub-drainage pipe system at the wall footing level, surrounded by gravel and geo-fabric? That way, we’re not replacing your method, just reinforcing it to handle excess water more efficiently.”

I showed him a previous case study with photos where only relying on weep holes had caused seepage and pressure build-up. I didn’t pressure him to change, but I asked him to weigh the cost of doing it now versus the cost of failure later.

He paused, looked at the drawings, and said:

“Actually, that makes sense. Your idea covers my approach, but also adds redundancy. We’ll go with the hybrid system.”

In the end, we aligned. It wasn’t about proving who was right, it was about respecting each other’s perspectives and coming up with a stronger solution together.


No. 2

Just a gentle reminder regarding construction planning:

Ensure you submit all initial documents required by the contract, including the Project Execution Plan, Project QHSE Plan, Method Statements, Drawings, etc., before mobilizing to the site.

Avoid initiating setting-up, measurement and surveys on unapproved drawings or prior drawings being approved.

Most importantly, obtain the necessary site approvals from DOSH, CIDB, and other relevant authorities.

I have issued three major NCRs on these issues despite the excuse of "this is the normal culture" (which, frankly, is not acceptable). Come on, team, you should already know these basics by now (it's all outlined clearly in the contract - READ IT!). Don't take any risks, if anything were to happen, you might not secure any insurance, and worse still, you could face serious legal consequences.

No. 3

Project and Construction management and operations should never be taken lightly. It's crucial to develop a comprehensive plan that outlines the pre-construction, execution, and post-construction phases. This plan should cover essential aspects such as scheduling (with CPM), finance, material management, inspections and testing, risk management, construction and safe work method statements, installation procedures, QA/QC, audits, and assessments. Always ensure a thorough review of the contract before starting.

I am particularly concerned about the declining quality of construction method statements. They often seem to be treated carelessly, lacking reference to codes of practice or standards, with no inclusion of job safety analysis (JSA) or job hazard analysis (JHA), no mention of licensing requirements for skilled workers (such as crane operators), and frequently consisting of copy-pasted manufacturer instructions. Critical elements like the Inspection and Test Plan (ITP) are often overlooked. This is a vital document, without it, construction may be conducted haphazardly, leading to safety and environmental risks that could endanger lives.

No. 4

In a previous role, I was assigned to oversee an internal audit, data analysis, and presentation at a construction company's Management Review Meeting. The analysis revealed the number and types of non-conformances (NCs) by project.


Some Project Managers reacted with amusement when they saw another project with significantly more NCs than theirs. However, my concern lay with projects having fewer NCs, as these might potentially mask more severe issues.

When the CEO asked me to comment, I suggested incorporating cost into the analysis, as the financial impact of NCs is crucial for top management. My comments has shifted the "giggles" into "silence and pale faces" - with one PM stood up being defensive claiming that :

a) The COQ (Cost of Quality) has never been done in the past
b) It's another person's job to determine cost of repair

(Typical excuses)

"Relax Mr. X, let's listen first - Nik is here because I hired him to improve where we can"

I carried on with my "dissertation"

A project with fewer NCs but higher repair costs might pose a greater risk than one with more NCs requiring minor documentation changes.

e.g.

5 NCs involve amendment of documented information - how much will it cost?

while

1-2 NCs involve hacking of a certain structure wrongly installed or defective and had to be rebuilt - how much will that cost?

So, it's not really the numbers of NCs but it's the type of NCs and the cost of repairing of such NCs that matters to the top management (money)

If 1-2 NCs involve RM30,000 - RM40,000 to repair, what is 5NCs involving documentation amendments?

Ultimately, the focus should be on the type and cost of NCs, not solely on the number. This approach provides a more accurate and informative picture of the organization's overall performance.

No. 5

I was doing freelance work for a consulting company, among others - reviewing construction method statements. I always had quite a number of comments. Some contractors (not all) these days don't take serious work seriously enough. For example, one common issue is that they include a "Reference Section," but the content just says "relevant codes of practice" or "relevant drawings," when they should be specifying which standards or drawing numbers?

As for "safety procedures," there's no mention of "Risk Assessment, JSA/JHA, HIRARC" (this is a lifting activity involving cranes we're talking about, and there isn't even a Lifting Plan - come on, guys, you can do better than this).

Backfilling is mentioned, but there's no explanation of the backfilling methods, materials, layering, or compaction to ensure stability.

Here's something funny: "All works shall be done in the hoarded area and signages will be included" (fine), but then it says "signs outside the hoarded area are not required?" (they actually wrote that in the Method Statement)

LOL. This is another example of poor practice. You still need signs outside the barricaded area to help people outside be aware (of what's going on "inside"), traffic control (entry and exit points), and provide information such as site entry points and emergency contact details outside the hoarded area in case of emergencies.

That's just few examples - there are many more, actually. My point is simple - don’t treat your work as a joke, especially in the construction industry. Don’t take documentation lightly just because you have the technical expertise. I’ve witnessed fatalities, incidents, and accidents simply because people refused to follow the correct documentation.

No. 6

First it's ageism, now this.

Interviewer: I noticed from your CV that you don’t stay long in one place. (an impression of Rolling stones gather no moss.)

My Response: Have you worked in the construction industry before?

Interviewer: Yes. (Looking puzzled.)

My Response: Then you should understand of all people that in construction, most of us work on a project basis. Some join at the start of a project, others in the middle, but once the project is completed, we move on to the next opportunity. Unlike HQ roles, we don't have the luxury of long-term stability in one place, but we do build solid references for future projects.

(Some questions such as this shouldn’t be asked in the construction industry (my cv is there for the "HR" person to refer) - it reflects a lack of understanding about the nature of the work especially when it involves "contract basis" in the construction industry.)

No. 7


PROPERTY COMPANY - IT'S TIME TO REBRAND

I know this might be hard on some, but let’s admit it, just like hashtagarchitectural, hashtagconstruction and hashtagconsulting firms (which I have spoken enough on the subjects) - even a highly successful PROPERTY COMPANY can benefit from a "new breath of life", a strategic refresh that sustains relevance, competitiveness, and long-term growth without abandoning its core values and principles.

LET’S START WITH SOMETHING NOT TOO AMBITIOUS
HERE’S A TYPICAL 6 PHASE PROPOSED ROADMAP SUITABLE FOR PROPERTY COMPANIES OPERATING IN SOUTH EAST ASIA – Hope it helps




No. 8

The purpose of a BQ is to ensure that all contractors who bid for a contract are using the same information to price their bids. It is also used for post-tender work such as cost analysis, construction planning, and material scheduling.

The Bill of Quantities (BQ) guidelines from Jabatan Kerja Raya (JKR) include:

1) Item pricing: Each item in the BQ must be priced individually.

2) Bulk pricing: Bulk pricing for sections, trades, or groups of items is not allowed.

3) Contract application: The items in the BQ apply to the entire contract.

4) References: The descriptions in the BQ are not comprehensive and should be referenced to other documents.

5) Other documents that may be referenced include:

5.1) General Conditions and Drawings

5.2) Specifications

5.3) Malaysian Civil Engineering Standard Method of Measurement 2nd. Edition (MyCESSM 2)

5.4 A Guide to Malaysian Civil Engineering Standard


No. 9

TASKS NOT SUITED FOR A CIVIL ENGINEER (unless necessary)
In a large construction and consulting firm of Mega Projects

1. Clerical/Admin Tasks

a) Filing, printing, photocopying documents.
b) Managing office supplies or pantry duties.
c) Booking meeting rooms or arranging refreshments.
d) Updating contact lists, calendars, or simple data entry.

2. Document Control

a) Creating or updating transmittal logs.
b) Logging and tracking RFI submissions and approvals.
c) Managing revision history of drawings.
d) Archiving documents physically or digitally.

Note: Civil engineers should understand the flow of these documents, but not handle them directly.

3. Courier/Dispatch Duties

a) Delivering drawings or documents to authorities or consultants.
b) Collecting approvals or permits in person unless they’re the applicant.

4. Procurement/Logistics (at certain level)

a) Sourcing stationary or office furniture.
b) Tracking delivery of non-engineering supplies.
c) Preparing petty cash claims for others.

5. Computer Support Tasks

a) Fixing printers, network issues, or setting up workstations.
b) Managing company emails or shared drives.

6. Graphic Design/Presentation Formatting

a) Designing brochures, templates, marketing visuals (unless it’s an engineering report).

b) PowerPoint formatting for company profiles.

7. Cleaning/Site Maintenance

Sweeping, painting, or minor repairs (unless it’s for a test/demo under supervision).

8. HR or Payroll Tasks

a) Processing timesheets or salary slips for others.
b) Distributing HR forms or coordinating leave approvals.

No. 10

In the construction industry, we appear to have comprehensive systems for Quality, Safety, and Environmental management, but I often observed two recurring challenges: inconsistencies in Job Descriptions (Responsibilities and Authorities), Assessment - Inspection and Audit. JD frequently fail to align with responsibilities of process owners outlined in procedures. Inspections tend to rely on insufficient sample sizes, and audits are conducted based on specific elements rather than process-based.

No. 11




Based on JKR’s Road Safety Audit (RSA) Guidelines, the common problems encountered at each stage are (not limited to the following):


Pre-Construction Stages:

Stage 1Feasibility and Planning Audit:

  • Lack of consideration for road safety in route selection and alignment planning.
  • Surveyor possibly either not having enough experience or unlicensed Surveyor

Stage 2Preliminary Design, Land Acquisition Audit:

  • Insufficient space for road reserves, affecting future expansion and safety features.
  • Difficulties in the Land Acquisition due to lacking of documentation and bordering

Stage 3Detailed Design, Design Safety & Compliance Audit:

  • Poor intersection or junction design leading to potential conflicts and safety hazards.
  • The Engineer either not having enough experience or not registered (BEM) as PEPC hence submission to the authorities may be rejected and required to be amended many times. Consequences : Affecting cost and scheduling.

Construction Stages (Stage 4):

Stage 4, Part 1 – Traffic Management Plan, Verification Audit:

  • Inadequate temporary traffic control measures, leading to confusion and accidents.
  • Lack or missing data in the TMP

Stage 4, Part 2 – Construction, On-Site Traffic Control Plan, Audit After 50% Completion:

Poor maintenance or inadequacy of temporary road signs and barriers, increasing the risk of collisions. Materials including painting used may be of low-quality standards

Stage 4, Part 3 – Pre-Opening Audit:

Incomplete or missing road safety elements such as signage, lighting, and road markings before public use. Some lightings are solar-based but again of poor quality. Inadequate cat eyes at potential hazardous locations.

No. 12

This is a rare opportunity to share key insights from QHSEL Consultancy Sdn. Bhd. confidential gap analysis and assessment of a due diligence and audit report carried out for a construction group with interests in quarry operations. Declassified with the client’s explicit consent for educational references. The content also offers viewers a clearer understanding of the scope and depth of my professional work particularly as it represents one of many confidential assignments not typically included in my biodata or CV.






No. 13

When assigning tasks, it's essential to reference the job description, roles, responsibilities, and authority, as well as the relevant procedures owned by the process owner. This is necessary to establish clear metrics and standards for measurement. Regular reviews of these tasks are crucial to prevent employees from feeling overwhelmed by additional responsibilities. Sometimes, it may be necessary to adjust targets, such as reducing waste by 2% of a construction project valued at 1 million. However, aiming for a 2% reduction in waste for a construction project worth 1 billion may be unrealistic. Therefore, it's logical to consider lowering the target to 1% or even less in such cases. Always take into account the specific industry you're involved in. I've witnessed many practitioners make the mistake of setting excessively high expectations, leading to high employee turnover. Therefore, it's important to stay vigilant and open-minded. Conduct thorough research on any unfamiliar industry you encounter. Avoid generalizations or assuming that the same approach applies across all industries, as assumptions can have serious consequences

No. 14

(in response to an email query)

Dear friend

I do hope that the next time, you will try to post your question 'in the open'. You can use pseudonym if you want to. I adopt a 'transparent' concept in networking so that all forum members may benefit from it - it's a learning and teaching environment.

Here's the information that you've asked and lucky you - it's in BM as you wanted. Judging by the your 'questioning techniques', I'm pretty sure that you are from Civil and Building/Structural Engineering Works.

Please be reminded that this model may subject to (generic) minor/major changes if you are involved in highway construction (civil)

There's a lot more where that came from.

I do not have the full answer to your question on 'aggregate and concrete' but I do have something that may help you out. (the following is ONLY a preliminary research (literature review) and not the thesis itself)

Besides British Standards 812, you should also cross reference to BS 882 as well. Please contact BSI or SIRIM Berhad or Jabatan Standard Malaysia (I am unsure if they have an equivalent MS Standard. Perhaps you can enquire - but I do also know that some BS standards are also available over there)

On your other query of how or where to start, try to make your own assumption first by creating your own target on the interrelationship between the following values with the concrete strength and the targeted ages typically 7, 14 & 28 days:

* Aggregate Impact/Crush Values (please specify grade), x% fine values, water absorption Value, LA Abrasion Value, Polished Stone Value

The usual testings are Crush Cube and Flexural tests with respective dimensions of x X y X z mm (e.g. 150 X 150 X 150mm).

On your question about engaging quality management consultant, I must advise you not to engage QM Consultant having inferior or no knowledge at all in the construction industry - otherwise you'll end up in chaos! I've seen a small number of quality consultants (with the necessary professional affiliations) have spoiled their clients (main contractors) by giving a 'xerox QMS documentation' from a manufacturing industry. A client of mine was very lucky to catch hold of me when THEIR clients are 'shouting' to get the earthworks & piling method statements but instead were being given some work instructions that has no absolute relation to the client's specification, drawing, design brief and even contractual requirements. Even the procedures are text based and NONE of them are flow-chart/process-flow based. Although I have managed to pacify the Client (who was about to terminate the contract of the main contractor), I must admit that I was 'a bit disappointed' to see this is happening as the scenario may have somehow (to a certain degree) 'spoiled' the reputation of genuine/experienced consultants.

You appear to have the necessary qualifications and experience in Construction both QA/QC, I think with proper guide, you can do it!

No. 15



Proactive Drainage Management in Mid-Construction Phase

Project: Commercial Complex Development
Location: ..........
Phase: Earthworks and Substructure
(Extracted from my 2012 Site Diary)

During the monsoon season, the project faced repeated waterlogging issues on-site due to inadequate temporary drainage planning. This not only disrupted work schedules but also posed risks of soil erosion and structural compromise to the foundation works.

Rather than waiting for recurring damage, the site team convened an emergency coordination meeting involving the contractor, C & S consultant, and project manager. Within 48 hours -

a) A temporary drainage redesign was proposed, including reinforced earth drains, silt traps, and redirection away from the foundation zone,
b) Materials were procured locally to fast-track installation,
c) Daily site inspections were conducted post-rainfall,
d) A joint monitoring checklist was signed weekly by all stakeholders.

As a result :

- No major waterlogging occurred after implementation.
- Construction resumed 3 days ahead of the revised timeline.
- The proactive approach was praised in the monthly progress review as a replicable best practice.

Lesson Learned:

Early identification + collaborative problem-solving = efficient mitigation. Don't wait for a crisis, design your site as if the worst weather has already arrived.

No. 16

PWD Form 203A (Rev. 2007) is a standard form of contract issued by the Public Works Department Malaysia [Jabatan Kerja Raya Malaysia]. It is used for government construction projects where a Bill of Quantities (BQ) forms part of the contract documentation.

It is legally binding and governs the relationship between the Government and the appointed contractor in public construction projects. Its primary importance lies in providing a clear framework for:

- Roles and responsibilities of the Government and the contractor
- Contract administration and payment
- Work quality and safety obligations
- Handling variations and claims
- Ensuring accountability and performance

Some major clauses cover:

- Contract Period, Site Possession, and Completion
- Payment mechanism (interim and final certificates)
- Variations and valuation
- Performance Bond and Insurance
- Termination and default
- Arbitration and dispute resolution
- Employment of workers (including SOCSO/EPF compliance)

Advantages of Using PWD Form 203A

a) Standardization and Clarity

- Ensures consistency in project delivery across government projects.
- Defines obligations, timelines, and procedures clearly for both parties.

b) Legal Protection

- Protects the Government’s interest by detailing mechanisms for defaults, damages, and termination.
- Includes mandatory performance bonds, insurances, and guarantees.

c) Risk Management

- Outlines procedures for delay, force majeure, site accidents, etc.
- Ensures proper indemnity clauses and SOCSO/insurance coverage.

d) Control Over Quality and Cost

- Contains strict provisions for quality of workmanship and materials.
- Bills of Quantities control cost through defined rates and scope.

e) Auditability and Transparency

- Supports financial governance, final accounts, and interim certifications.
- Facilitates anti-corruption compliance via clauses on termination due to corruption.

There are others such as PWD 203N and DB, [PAM] Pertubuhan Akitek Malaysia - Malaysian Institute of Architects - Standard form of Contract (with and without Quantity), 2018 (with and without quantity)

No. 17

In the construction industry, it's undeniable that contractors might make occasional mistakes. However, when these same errors become repetitive, before placing blame on the contractor, clients should consider:

1) Reviewing the criteria used for selecting the contractor initially (which may have "overlooked" their track record)

2) Evaluating whether the contractor lacked proper briefing on:

a) Contractual requirements.

b) Delays in receiving Project (QHSE) Plan, drawings, etc., yet allowed to continue work.

c) Inadequate induction by the Project Manager, supervisor, PIC, or safety/quality personnel, possibly reflected by incomplete site diary entries.

d) Lack of supervision during the occurrence of shoddy work or defects.

These factors may raise red flags, prompting questions about potential connections (cronies?) between the contractor and the client. (as the same defects, the same non-conformances , the same faulty/shoddy work keep repeating year after year?)

No. 18



LRT SUBWAY TUNNEL – MY EXPERIENCE WITH HAZAMA CORPORATION

Gained firsthand experience in subway tunnel construction for the second time, following an earlier involvement with Balfour Beatty Construction (also certified with BS 5750 (now known as ISO 9000). Played an active role in the internal audit that led to the first ISO 9000 certification in Malaysia ever awarded to a Japanese contractor in 1996, setting new quality benchmarks in the industry.

The LRT subway tunnel from Ampang Park to Dang Wangi part of the Kelana Jaya Line (formerly known as PUTRA-LRT) was constructed by Hazama Corporation of Japan circa 1995 and 1998 using the Tunnel Boring Machine (TBM) method.

A Brief Overview

1. Tunnel Boring Machine (TBM) Method

TBMs were used to excavate the tunnel beneath Kuala Lumpur’s busy city center, including Jalan Ampang and Jalan Raja Chulan.

The method was chosen to minimize surface disruption in the congested urban area.

The TBM used was likely of the Earth Pressure Balance (EPB) type, suitable for KL's mixed ground conditions, sandy clay and residual soils over granite.

2. Launching Shaft Construction

Launching shafts were built at strategic locations like Ampang Park or Bukit Nanas, where the TBM was assembled and lowered underground.

3. Excavation and Lining

As the TBM advanced, it simultaneously installed precast concrete segmental linings to form the tunnel walls.

This method ensured structural stability and prevented ground settlement.

4. Ground Treatment (if needed)

In areas with loose or water-bearing soil, grouting or ground freezing might have been used to stabilize the tunnel face.

5. Spoil Removal

Excavated soil (“muck”) was transported back through the tunnel via conveyor belts or muck cars.

6. Station Box Construction

For underground stations like Dang Wangi, a cut-and-cover method or NATM (New Austrian Tunneling Method) was sometimes used (also adopted by Balfour Beatty - Heathrow Tunnel), depending on depth and surface constraints.

The construction showcased Malaysia’s early adoption of advanced tunneling technology and set a benchmark for later urban MRT projects.

Looking back, being part of two major tunnel construction projects first with Balfour Beatty and later with Hazama Corporation has been both humbling and inspiring. These experiences not only deepened my technical understanding but also shaped my appreciation for precision, teamwork, and the relentless pursuit of quality.

Contributing to both BS 5750 (1991) with Balfour Beatty and ISO 9000 (1996) and Hazama Corporation remains a proud milestone, reminding me that behind every great structure lies a commitment to standards and the people who uphold them. These are the moments that continue to define my journey in the construction industry.

No. 19




COMMON SCAFFOLDING PROBLEMS

Scaffolding is a critical component in construction and industrial work, but it also comes with various safety and operational risks. Have a list of reference such as FMD 1967 (Act 139) - Building Operations & Works of Engineering Construction) Regulations 1986, OSHA 1994 (Act 514), CIDB - scaffolding safety guidelines, DOSH - Guidelines for the Safe Use of Scaffolding, MS 1462 – design, materials, and load capacities of scaffolding systems.

1) Improper Erection - lack of skilled workers, rushing the job, or not following manufacturer specs.

1.1 Prevention: Only certified erectors should install scaffolding, follow SOPs and manufacturer guidelines, Supervisor must verify proper setup before use.
1.2 Responsible party: Installer and Supervisor.

2) Unstable or Uneven Base - ground not leveled or base plates/screw jacks not used.

2.1 Prevention: Use base plates/sole boards, inspect ground condition before erection, don’t use bricks/wood blocks to level.
2.2 Responsible party: Installer, Supervisor, sometimes Site Engineer.

3) Overloading - misjudgment of load limits - materials or workers exceed safe weight.

3.1 Prevention: Clear signage for load capacity, proper material staging plans, educate workers.
3.2 Responsible party: Users (workers), but also Supervisor for not enforcing.

4) Missing Guardrails or Toe Boards - Poor installation, shortcuts, or missing components.

4.1 Prevention: Guardrails/toe boards to be installed at all open edges, routine visual checks before use.
4.2 Responsible party: Installer, Supervisor, and Safety Officer.

5) Loose Planks or Platforms - planks insecured or inappropriate material used.

5.1 Prevention: Use locking mechanisms/tie-downs, inspect planks for warping/defects.
5.2 Responsible party: Installer, Safety team.

6) Inadequate Access (Ladders/Stairs) - workers climb the scaffolding frames unsafely.

6.1 Prevention: Install proper access ladders/stairways, prohibit unsafe climbing.
6.2 Responsible party: Installer, Site Supervisor.

7) Scaffold Too Close to Power Lines - Poor planning/unawareness of electrical hazards.

7.1 Prevention: Follow OSHA/DOSH for safe clearance, identify live lines during pre-task risk assessments.
7.2 Responsible party: Planner, Installer, Safety Officer.

8) Lack of Inspection and Maintenance - no schedule for daily/weekly checks.

8.1 Prevention: Daily visual checks, weekly inspections.
8.2 Responsible party: Supervisor, Safety Officer.

9.0 Weather Hazards - scaffolding not anchored properly; working in unsafe conditions.

9.1 Prevention: Tie scaffolding to the structure, cease work during high wind/rain.
9.2 Responsible party: Supervisor, HSE Officer, Project Manager.

10.0 Using Damaged or Substandard Materials - budget cuts, poor supplier choice, or no QA process.

10.1 Prevention: Use certified scaffolding components, supplier vetting and material testing.
10.2 Responsible party: Supplier, Procurement, Supervisor.

No. 20

Famous Real-World Failures Due to Engineering Mistakes

Tacoma Narrows Bridge (1940) – Poor aerodynamics caused excessive oscillations leading to collapse.

Hyatt Regency Walkway Collapse (1981) – Design change led to overstressed connections, causing a fatal collapse.

Sampoong Department Store Collapse (1995) – Structural modifications and material changes led to one of the deadliest building failures.

Genoa Bridge Collapse (2018) – Poor maintenance and undetected structural degradation caused a major failure.

Grave engineering mistakes during construction can lead to catastrophic failures, costly repairs, legal consequences, and even loss of life. Here are some critical mistakes and their potential impacts:

1. Poor Structural Design

Mistake: Inadequate load calculations, missing reinforcement, or using substandard design practices.

Impact: Structural failures, collapses, and excessive deflections leading to unsafe buildings.

2. Foundation Failures

Mistake: Insufficient soil investigation, incorrect foundation type, or poor ground compaction.

Impact: Settlement, tilting, cracking, and in extreme cases, complete collapse (e.g., Leaning Tower of Pisa was saved but not all structures are as lucky).

3. Use of Substandard Materials

Mistake: Cutting costs by using low-quality concrete, steel, or other materials.

Impact: Reduced durability, structural weakness, and increased susceptibility to environmental factors like corrosion and weathering.

4. Poor Concrete Workmanship

Mistake: Improper mixing, inadequate curing, honeycombing, or cold joints.

Impact: Weak concrete, water penetration, and eventual deterioration of structural elements.

5. Ignoring Geotechnical Considerations

Mistake: Overlooking soil bearing capacity, groundwater issues, or slope stability.

Impact: Landslides, sinkholes, foundation failures, and flooding.

6. Errors in Reinforcement Placement

Mistake: Incorrect rebar spacing, improper anchorage, or missing reinforcement in critical areas.

Impact: Structural cracking, reduced load-bearing capacity, and early failure under stress.

7. Poor Quality Control and Inspections

Mistake: Lack of proper site supervision, skipping quality tests, and ignoring non-conformities.

Impact: Unchecked defects that accumulate over time, leading to unsafe structures and expensive repairs.

8. Ignoring Water Drainage Systems

Mistake: Lack of proper drainage planning, poor waterproofing, and incorrect slope grading.

Impact: Water seepage, foundation erosion, mold growth, and flooding-related damages.

9. Improper Formwork and Shoring

Mistake: Weak or improperly supported formwork, premature removal of supports.

Impact: Collapse during construction, injuries, and structural defects.

10. Neglecting Safety Standards

Mistake: Ignoring OSHA guidelines, poor site safety protocols, or using improper equipment.

Impact: Workplace accidents, fatalities, lawsuits, and project delays.

No. 21

WHY IS THE PILE BROKEN? POSSIBLE REASONS

There was an online discussion with my QA/QC colleagues, and I was shown a photo of a damaged pile (short pile). Unfortunately, I can't share the photo here.

When I asked for opinions on the root cause, many suggested the issue could be due to:

a) improper cutting,
b) defective pile (poor concrete mix) or insufficient curing time during casting,
c) uneven load distribution,
d) or unstable soil conditions, groundwater presence, incorrect toe bearing capacity, etc.

While I agree with these potential causes, upon a quick glance, and based on my experience as an auditor and QA/QC professional, I suspect the breakage could be related to "lifting."

It’s possible that the pile was lifted using an excavator with a chain sling, where uneven force or sudden jerks caused excessive stress, leading to cracks and breakage - especially if the pile already had pre-existing weaknesses (as noted in (a) to (d)).

In general, I don’t recommend using an excavator with a chain sling unless necessary. Pile lifting clamps or a spreader beam would be a better alternative.

That said, I don't dismiss the use of an excavator with a special chain sling, lifting clamps, or a spreader beam, as it depends on the specific case, site conditions, or the type of piles (precast driven piles, bored piles, sheet piles, timber piles, etc.).

But other methods, such as hydraulic jacking (pile puller), vibratory hammers, or even water jetting, could also be helpful.

It’s important to consider factors (a) to (d) as well:

-Improve cutting techniques, like wire saw cutting or hydraulic pile cutting.
-Ensure proper mix design, curing, and pile reinforcement placement during casting.
-Conduct checks during pile driving or boring to ensure no pre-existing defects before cutting.
-Perform a geotechnical investigation on soil conditions and ensure the piles are designed to withstand ground movements.
-Provide training using method statements, especially for proper cutting methods and handling.

Testing such as Load Bearing tests after repairs and Pile Integrity Testing (PIT) during repairs should also be considered. PIT is essential to check if adjacent piles are in good condition, not just the specific location of concern, multiple sampling locations should be tested.

That said, an excavator can help with pile removal by:

-Loosening the soil around the pile before using other extraction methods.
-Supporting the removal process when using hydraulic jacks or vibratory hammers.

Consider using the following standards (referenced them in the Method Statement)

Among references :

JKR Standard Specification for Building Works (2014): Issued by the Public Works Department (Jabatan Kerja Raya, JKR) Malaysia, this specification provides comprehensive guidelines on foundation works, including pile installation and pile cap construction

MS 1314-5:2004, MS 1314-7:2011, BS 8004, BS EN 1536, BS EN 12699

No. 22

In my 30 years in construction industry, I have never accepted a bribe. I'm not boasting but I would rather earn an honest simple living or being poor than taking bribe at the expense of others' safety, let alone feed my family with it. There have been attempts, during assessments, before completion of certain work, or when individuals tried to cut corners or procure substandard materials. Each time, I reported these attempts to the authorities. (Whether or not further action is/was taken)


No. 23


Construction Tech 2025 : AI-Powered Digital Twin is Changing the Game

One of the most transformative technologies in the construction industry this year is the AI-powered Digital Twin, a real-time virtual model of a project that mirrors the physical build using IoT and data analytics.

1) How it works

Digital Twins are created from BIM data and integrated with live input from sensors on-site. AI processes this data to simulate construction progress, predict risks, optimize resource use, and even monitor safety.

2) Engineering Application

2.1 Structural Monitoring: Sensors track load, stress, and material behavior in real-time, allowing early detection of faults or deviations,

2.2 Design Validation: AI simulations test design alternatives in the twin environment before physical execution, reducing rework,

2.3 Construction Sequence Optimization: AI models assess and reconfigure task sequences for maximum efficiency.

3.0 Benefits

3.1 Faster Completion: Up to 30% time savings by minimizing delays and improving coordination.

3.2 Smarter Decisions: Real-time insights to adjust schedules, materials, and manpower instantly.

3.3 Enhanced Safety: Proactive alerts and predictive modeling for high-risk activities.

3.4 Better ESG Compliance: Tracks energy use and environmental impact for sustainability goals.

4.0 Mistake Detection

4.1 Design Clashes and Inconsistencies - Integrates with BIM to identify clashes between structural, MEP, and architectural elements before construction starts.

4.2 Real-Time Performance Monitoring - IoT sensors embedded in materials, structures, or equipment send live data to the twin. AI algorithms compare actual vs. expected performance, flagging anomalies such as:

Uneven settlement, abnormal stress/load or deviation in temperature or moisture

4.3 Process Deviation

4.3.1 Tracks sequence of work vs. the planned timeline.
4.3.2 Flags skipped steps or construction methods that don’t comply with approved methodology.

4.4 Material Defects or Usage Issues - AI models can detect patterns that suggest poor material quality (e.g., based on vibrations, density, or thermal data from sensors).

4.5 Safety Violations - Monitors for improper equipment placement, unsafe worker behavior, or missing PPE (using computer vision).

5.0 Early Detection is important to :

Reduces rework and waste, prevents costly structural issues, supports quality control and assurance (QA/QC) and improves compliance with codes and standards

6.0 Conclusion

The future of construction is not just about building, it's about building smarter, safer, and more sustainably. The AI + Digital Twin combo can be an essential tool in the future.

No. 24

WHAT CAUSES STRUCTURE FAILURE - CE 101 - QUICK LOOK



Structural failure can occur due to various factors, including poor design, material defects, construction errors, and environmental influences.

1. Foundation Failure
(e.g., Building Settling or Tilting)

Cause - Weak soil, poor compaction, or water infiltration causing soil erosion.
Detection - Cracks in walls and floors, uneven floors, doors/windows sticking.
Solution - Soil stabilization, underpinning, or installing drainage systems.

2. Beam or Slab Failure
(e.g., Roof or Floor Collapse)

Cause - Overloading, poor reinforcement, or low-quality concrete.
Detection - Excessive deflection (sagging), visible cracks, exposed rebars.
Solution - Strengthening with additional support (e.g., steel plates, carbon fiber wraps) or reconstruction.

3. Bridge Failure
(e.g., Structural Collapse)

Cause - Corrosion of reinforcement, excessive loading, or fatigue failure.
Detection - Rust stains, spalling concrete, misalignment of structural components.
Solution - Regular maintenance, corrosion protection, reinforcement repair.

4. Retaining Wall Failure
(e.g., Leaning or Cracking Walls)

Cause - Poor drainage, inadequate reinforcement, or soil pressure.
Detection - Tilting wall, water seepage, horizontal cracks.
Solution - Improve drainage, reinforce with tiebacks, or rebuild with stronger materials.

5. Roof Truss Failure
(e.g., Collapse Due to High Wind or Load)

Cause - Poor connections, excessive weight, or improper design.
Detection - Deformed or cracked trusses, sagging roof.
Solution - Reinforcement, additional bracing, or replacing faulty trusses.

Regular inspections, proper design, and quality construction materials help prevent failures.

No. 25

antibribery hashtagantimoneylaundering hashtaganticorruption

True case. That's why ABMS Auditors and the Authorities should also be equipped with some "forensic audit skills" especially when it comes to construction industry.


No. 26

Here’s a basic guide from a previous construction client, created following a gap analysis I performed. I’ve modified some of the content, so feel free to adapt it to your needs (e.g., the Probability x Impact or Risk = Likelihood x Severity calculation is not included here). Please note, this is only a reference guide, originally designed to help a fellow Safety and Health Officer (hashtagSHO) gain a better understanding of the Job Safety and Hazard Analysis ( hashtagJSA hashtagJHA) for a Welder and Fitter in the construction industry. It combines hazard identification with corresponding safety measures to enhance the risk assessment process.

hashtagOSH hashtagOHS hashtagRiskAssessment hashtagHIRARC


No. 27

3D printed house is its making way into the construction industry even in Malaysia as I speak. It's going to be a great catalyst to house and building construction technology. Imagine a stable and cost-effective structure built using 3D printing technology.

Instead of traditional construction methods like bricklaying or using pre-made materials, these houses are constructed layer by layer using a large 3D printer.

The printer typically uses materials like concrete, plastics, or other composite materials to create the layers, gradually building up the entire structure.

The process offers several potential advantages, including reduced construction time, lower costs, and the ability to create more complex architectural designs.

Additionally, it can be more environmentally friendly by minimizing waste and utilizing sustainable materials. As the technology continues to evolve, 3D printed houses have the potential to revolutionize the construction industry by providing affordable and customizable housing solutions.



No. 28

This question was posed to me in 2024.

Question: What are the potential causes of leakage in a Make-Up Water Tank?

Answer: Determining the exact cause of leakage without visual evidence, such as photographs of the affected area is challenging, especially when site-specific details are withheld. Nonetheless, it is important to note that the possible causes outlined below may not be universally applicable, as they depend significantly on the tank’s design, construction method, materials used, and operational conditions.

1) Post-Casting leakage may indicate poor waterproofing and weak construction joints

2) Use of Plywood Formwork during casting may not have produced a smooth surface, leading to poor concrete bonding and surface irregularities.

3) No Autostop: Overpouring of concrete causing voids and structurally weak areas within the tank.

4) Defective Joint indicate improperly planned and executed construction joints creating pathways for water seepage.

5) Failed Ponding Test: The tank did not pass the watertightness test, confirming leakage issues.

6) Sealant Repair Work - it's reliable but improper application can make the problem worse

7) Poor Workmanship and Concrete Finish - honeycombing and uneven surfaces,

8) Localized Honeycombing on Tank Wall: Poor concrete compaction in specific areas led to voids, compromising both the structural integrity and waterproofing effectiveness of the tank.

No. 29

When preparing a proposal, such as for a housing development, I've noticed two common mistakes that can potentially hinder its approval.

No. 1 Poor Market Analysis - failing to understand the target market's needs, preferences and purchasing power, leading to mismatched designs or pricing.

e.g. Building high-end luxury homes in an area primarily populated by middle-income families can lead to low demand and unsold units.

No. 2 Inaccurate Cost and Revenue Projections - Underestimating development costs or overestimating sales revenue, which can result in financial shortfalls and project delays.

e.g. Say - a project estimates total development costs at RM10 million and plans to sell 50 units at RM250,000 each, expecting RM12.5 million revenue. However, unexpected material price hikes increase costs to RM12 million, while only 40 units sell, reducing revenue to RM10 million. This results in a RM2 million loss instead of a RM2.5 million profit.

No. 30

I’m delighted to see that Medan Pasar is undergoing restoration works. Kudos to Dewan Bandaraya Kuala Lumpur (Kuala Lumpur City Hall), International Council on Monuments and Sites (ICOMOS) Malaysia, Juteras Vision Sdn Bhd, and all parties involved, not just for Medan Pasar but also for their efforts in preserving other historical sites across Kuala Lumpur. These initiatives are part of the KL Heritage Agenda and align with KLCP 2020/KLDSP2040.

Here’s my perspective on how restoration works are typically carried out on heritage buildings. While the processes may vary, this is a general overview for public awareness.