DISCLAIMER - NIKZAFRI.BLOGSPOT.COM


Today, Knowledge Management today are not limited merely to : (A) 'knowing' or 'reading lots of books/scholarly articles' or (B) data mining, analysis, decision making, preventive actions, or (C) some Human Resources Management issue or (D) some ICT issue. Knowledge Management is about putting your knowledge, skills and competency into practice and most important IT WORKS! For you and your company or your business (Nik Zafri) Can I still offer consultancy or training? Who claims otherwise? Absolutely, I can.

The information comprised in this section is not, nor is it held out to be, a solicitation of any person to take any form of investment decision. The content of the nikzafri.blogspot.com does not constitute advice or a recommendation by nikzafri.blogspot.com and should not be relied upon in making (or refraining from making) any decision relating to investments or any other matter. You should consult your own independent financial adviser and obtain professional advice before exercising any investment decisions or choices based on information featured in this nikzafri.blogspot.com can not be held liable or responsible in any way for any opinions, suggestions, recommendations or comments made by any of the contributors to the various columns on nikzafri.blogspot.com nor do opinions of contributors necessarily reflect those of http://www. nikzafri.blogspot.com

In no event shall nikzafri.blogspot.com be liable for any damages whatsoever, including, without limitation, direct, special, indirect, consequential, or incidental damages, or damages for lost profits, loss of revenue, or loss of use, arising out of or related to the nikzafri.blogspot.com or the information contained in it, whether such damages arise in contract, negligence, tort, under statute, in equity, at law or otherwise.


MY EMPLOYERS AND CLIENTELLES



BIODATA - NIK ZAFRI


 



NIK ZAFRI BIN ABDUL MAJID,
CONSULTANT/TRAINER
Email: nikzafri@yahoo.com, nikzafri@gmail.com
https://nikzafri.wixsite.com/nikzafri

Kelantanese, Alumni of Sultan Ismail College Kelantan (SICA), IT Competency Cert, Certified Written English Professional US. Has participated in many seminars/conferences (local/ international) in the capacity of trainer/lecturer and participant.

Affiliations :- Network Member of Gerson Lehrman Group, Institute of Quality Malaysia, Auditor ISO 9000 IRCAUK, Auditor OHSMS (SIRIM and STS) /EMS ISO 14000 and Construction Quality Assessment System CONQUAS, CIDB (Now BCA) Singapore),

* Possesses almost 30 years of experience/hands-on in the multi-modern management & technical disciplines (systems & methodologies) such as Knowledge Management (Hi-Impact Management/ICT Solutions), Quality (TQM/ISO), Safety Health Environment, Civil & Building (Construction), Manufacturing, Motivation & Team Building, HR, Marketing/Branding, Business Process Reengineering, Economy/Stock Market, Contracts/Project Management, Finance & Banking, etc. He was employed to international bluechips involving in national/international megaprojects such as Balfour Beatty Construction/Knight Piesold & Partners UK, MMI Insurance Group Australia, Hazama Corporation (Hazamagumi) Japan (with Mitsubishi Corporation, JA Jones US, MMCE and Ho-Hup) and Sunway Construction Berhad (The Sunway Group of Companies). Among major projects undertaken : Pergau Hydro Electric Project, KLCC Petronas Twin Towers, LRT Tunnelling, KLIA, Petronas Refineries Melaka, Putrajaya Government Complex, Sistem Lingkaran Lebuhraya Kajang (SILK), Mex Highway, KLIA1, KLIA2 etc. Once serviced SMPD Management Consultants as Associate Consultant cum Lecturer for Diploma in Management, Institute of Supervisory Management UK/SMPD JV. Currently – Associate/Visiting Consultants/Facilitators, Advisors for leading consulting firms (local and international) including project management. To name a few – Noma SWO Consult, Amiosh Resources, Timur West Consultant Sdn. Bhd., TIJ Consultants Group (Malaysia and Singapore) and many others.

* Ex-Resident Weekly Columnist of Utusan Malaysia (1995-1998) and have produced more than 100 articles related to ISO-9000– Management System and Documentation Models, TQM Strategic Management, Occupational Safety and Health (now OHSAS 18000) and Environmental Management Systems ISO 14000. His write-ups/experience has assisted many students/researchers alike in module developments based on competency or academics and completion of many theses. Once commended by the then Chief Secretary to the Government of Malaysia for his diligence in promoting and training the civil services (government sector) based on “Total Quality Management and Quality Management System ISO-9000 in Malaysian Civil Service – Paradigm Shift Scalar for Assessment System”

Among Nik Zafri’s clients : Adabi Consumer Industries Sdn. Bhd, (MRP II, Accounts/Credit Control) The HQ of Royal Customs and Excise Malaysia (ISO 9000), Veterinary Services Dept. Negeri Sembilan (ISO 9000), The Institution of Engineers Malaysia (Aspects of Project Management – KLCC construction), Corporate HQ of RHB (Peter Drucker's MBO/KRA), NEC Semiconductor - Klang Selangor (Productivity Management), Prime Minister’s Department Malaysia (ISO 9000), State Secretarial Office Negeri Sembilan (ISO 9000), Hidrological Department KL (ISO 9000), Asahi Kluang Johor(System Audit, Management/Supervisory Development), Tunku Mahmood (2) Primary School Kluang Johor (ISO 9000), Consortium PANZANA (HSSE 3rd Party Audit), Lecturer for Information Technology Training Centre (ITTC) – Authorised Training Center (ATC) – University of Technology Malaysia (UTM) Kluang Branch Johor, Kluang General Hospital Johor (Management/Supervision Development, Office Technology/Administration, ISO 9000 & Construction Management), Kahang Timur Secondary School Johor (ISO 9000), Sultan Abdul Jalil Secondary School Kluang Johor (Islamic Motivation and Team Building), Guocera Tiles Industries Kluang Johor (EMS ISO 14000), MNE Construction (M) Sdn. Bhd. Kota Tinggi Johor (ISO 9000 – Construction), UITM Shah Alam Selangor (Knowledge Management/Knowledge Based Economy /TQM), Telesystem Electronics/Digico Cable(ODM/OEM for Astro – ISO 9000), Sungai Long Industries Sdn. Bhd. (Bina Puri Group) - ISO 9000 Construction), Secura Security Printing Sdn. Bhd,(ISO 9000 – Security Printing) ROTOL AMS Bumi Sdn. Bhd & ROTOL Architectural Services Sdn. Bhd. (ROTOL Group) – ISO 9000 –Architecture, Bond M & E (KL) Sdn. Bhd. (ISO 9000 – Construction/M & E), Skyline Telco (M) Sdn. Bhd. (Knowledge Management),Technochase Sdn. Bhd JB (ISO 9000 – Construction), Institut Kefahaman Islam Malaysia (IKIM – ISO 9000 & Internal Audit Refresher), Shinryo/Steamline Consortium (Petronas/OGP Power Co-Generation Plant Melaka – Construction Management and Safety, Health, Environment), Hospital Universiti Kebangsaan Malaysia (Negotiation Skills), Association for Retired Intelligence Operatives of Malaysia (Cyber Security – Arpa/NSFUsenet, Cobit, Till, ISO/IEC ISMS 27000 for Law/Enforcement/Military), T.Yamaichi Corp. (M) Sdn. Bhd. (EMS ISO 14000) LSB Manufacturing Solutions Sdn. Bhd., (Lean Scoreboard (including a full development of System-Software-Application - MSC Malaysia & Six Sigma) PJZ Marine Services Sdn. Bhd., (Safety Management Systems and Internal Audit based on International Marine Organization Standards) UNITAR/UNTEC (Degree in Accountacy – Career Path/Roadmap) Cobrain Holdings Sdn. Bhd.(Managing Construction Safety & Health), Speaker for International Finance & Management Strategy (Closed Conference), Pembinaan Jaya Zira Sdn. Bhd. (ISO 9001:2008-Internal Audit for Construction Industry & Overview of version 2015), Straits Consulting Engineers Sdn. Bhd. (Full Integrated Management System – ISO 9000, OHSAS 18000 (ISO 45000) and EMS ISO 14000 for Civil/Structural/Geotechnical Consulting), Malaysia Management & Science University (MSU – (Managing Business in an Organization), Innoseven Sdn. Bhd. (KVMRT Line 1 MSPR8 – Awareness and Internal Audit (Construction), ISO 9001:2008 and 2015 overview for the Construction Industry), Kemakmuran Sdn. Bhd. (KVMRT Line 1 - Signages/Wayfinding - Project Quality Plan and Construction Method Statement ), Lembaga Tabung Haji - Flood ERP, WNA Consultants - DID/JPS -Flood Risk Assessment and Management Plan - Prelim, Conceptual Design, Interim and Final Report etc., Tunnel Fire Safety - Fire Risk Assessment Report - Design Fire Scenario), Safety, Health and Environmental Management Plans leading construction/property companies/corporations in Malaysia, Timur West Consultant : Business Methodology and System, Information Security Management Systems (ISMS) ISO/IEC 27001:2013 for Majlis Bandaraya Petaling Jaya ISMS/Audit/Risk/ITP Technical Team, MPDT Capital Berhad - ISO 9001: 2015 - Consultancy, Construction, Project Rehabilitation, Desalination (first one in Malaysia to receive certification on trades such as Reverse Osmosis Seawater Desalination and Project Recovery/Rehabilitation)

* Has appeared for 10 consecutive series in “Good Morning Malaysia RTM TV1’ Corporate Talk Segment discussing on ISO 9000/14000 in various industries. For ICT, his inputs garnered from his expertise have successfully led to development of work-process e-enabling systems in the environments of intranet, portal and interactive web design especially for the construction and manufacturing. Some of the end products have won various competitions of innovativeness, quality, continual-improvements and construction industry award at national level. He has also in advisory capacity – involved in development and moderation of websites, portals and e-profiles for mainly corporate and private sectors, public figures etc. He is also one of the recipients for MOSTE Innovation for RFID use in Electronic Toll Collection in Malaysia.

Note :


TO SEE ALL ARTICLES

ON THE"LABEL" SECTION BELOW (RIGHT SIDE COLUMN), YOU CAN CLICK ON ANY TAG - TO READ ALL ARTICLES ACCORDING TO ITS CATEGORY (E.G. LABEL : CONSTRUCTION) OR GO TO THE VERY END OF THIS BLOG AND CLICK "Older Posts"


 

Showing posts with label ARTIFICIAL INTELLIGENCE. Show all posts
Showing posts with label ARTIFICIAL INTELLIGENCE. Show all posts

Tuesday, May 24, 2022

ASEAN CONTROL WORLD EXPO/TRANS4M - KL CONVENTION CENTRE - 23-24/05/2022 - MY BRIEF OBSERVATIONS - NIK ZAFRI

ASEAN Control World Expo/Trans4M 2022 #controlworldexpo with Managing Principal of Noma SWO Consult - KL Convention Centre, KLCC

It was great. The exhibitors have range of sophisticated state of the art technology, devices, robotics, software and apps, IOT and Artificial Intelligence. The QA/QC-based multi-faceted analysis presented were really good with detailed explanation and justifications.
What I see lacking are :
a) is the link towards applicable codes of practice especially when you speak about Standard Deviation or displaying measurement tables - without the applicable codes of practice/standards, people may be wondering where do you based your argument to determine that "this is ok" or "this is not ok" or "within tolerance" or "not within tolerance
b) The analysis; although thorough; unfortunately the "deficiencies" are not linked to some form of two most important elements, Risk Analysis (for proactive Risk Identification and Assessment) and Root Cause Analysis (RCA) to prevent similar problems to reoccur or at least reduced in the future. RCA will determine the competency of the person correcting the arising problems whether such person require additional training etc.
c) The analysis; despite multi-faceted; is not focused on "by cost-analysis" - which is extremely important in my 20+ years experience in QA/QC profession.
d) Some apps, system and devices are good in detecting vibration and noise - proven useful for construction industry such as "piling" - which is quite limited unless they are used for preventive slope stability analysis or soil movement or perhaps can be a value-added tool during Site Investigation/Reconnaissance.
The other problem is that the datum (like Lidar) should also make way for conversion/input into the modern Architectural Building Information Model to simulate or project the image via Augmented Reality and Virtual Reality.
e) On Personal Observations : I've also noticed the visitors are a little low, whether they have a low interest towards the "tech-nerdy" exhibition or the time is not right or perhaps the cost/pricing of sophisticated systems are "too high" to procure during post-lockdown recovery period. Whatever the case maybe, the organizers should promote this event a little more bigger in the future - considering the displays are significantly important to the future of industries.



Sunday, December 28, 2014

The Internet of Things (Source : Wikipedia) - Rewritten by Nik Zafri


The Internet of Things (IoT) is the interconnection of uniquely identifiable embedded computing devices within the existing Internet infrastructure. Typically, IoT is expected to offer advanced connectivity of devices, systems, and services that goes beyond machine-to-machine communications (M2M) and covers a variety of protocols, domains, and applications.

The interconnection of these embedded devices (including smart objects), is expected to usher in automation in nearly all fields, while also enabling advanced applications like a Smart Grid.

Things, in the IoT, can refer to a wide variety of devices such as heart monitoring implants, biochip transponders on farm animals, automobiles with built-in sensors, or field operation devices that assist fire-fighters in search and rescue. Current market examples include smart thermostat systems and washer/dryers that utilize wifi for remote monitoring.

According to Gartner, there will be nearly 26 billion devices on the Internet of Things by 2020. ABI Research estimates that more than 30 billion devices will be wirelessly connected to the Internet of Things (Internet of Everything) by 2020.As per a recent survey and study done by Pew Research Internet Project, a large majority of the technology experts and engaged Internet users who responded—83 percent—agreed with the notion that the Internet/Cloud of Things, embedded and wearable computing (and the corresponding dynamic systems will have widespread and beneficial effects by 2025. It is, as such, clear that the IoT will consist of a very large number of devices being connected to the Internet.
Integration with the Internet implies that devices will utilize an IP address as a unique identifier. However, due to the limited address space of IPv4 (which allows for 4.3 billion unique addresses), objects in the IoT will have to use IPv6 to accommodate the extremely large address space required. 
Objects in the IoT will not only be devices with sensory capabilities, but also provide actuation capabilities (e.g., bulbs or locks controlled over the Internet). To a large extent, the future of the Internet of Things will not be possible without the support of IPv6; and consequently the global adoption of IPv6 in the coming years will be critical for the successful development of the IoT in the future. 
The embedded computing nature of many IoT devices means that low-cost computing platforms are likely to be used. In fact, to minimize the impact of such devices on the environment and energy consumption, low-power radios are likely to be used for connection to the Internet. Such low-power radios do not use WiFi, or well established Cellular Network technologies, and remain an actively developing research area.However, the IoT will not be composed only of embedded devices, since higher order computing devices will be needed to perform heavier duty tasks (routing, switching, data processing, etc.).Companies such as FreeWave Technologies have developed and manufactured low power wireless data radios (both embedded and standalone) for over 20 years to enable Machine-to-Machine applications for the industrial internet of things.
Besides the plethora of new application areas for Internet connected automation to expand into, IoT is also expected to generate large amounts of data from diverse locations that is aggregated and very high-velocity, thereby increasing the need to better index, store and process such data.
Diverse applications call for different deployment scenarios and requirement, which have usually been handled in a proprietary implementation. However, since the IoT is connected to the Internet, most of the devices comprising IoT services will need to operate utilizing standardized technologies. Prominent standardization bodies, such as the IETF, IPSO Alliance and ETSI, are working on developing protocols, systems, architectures and frameworks to enable the IoT.
Intelligence
Ambient intelligence and autonomous control are not part of the original concept of the Internet of Things. Ambient intelligence and autonomous control do not necessarily require Internet structures, either. However, there is a shift in research to integrate the concepts of the Internet of Things and autonomous control,with initial outcomes towards this direction considering objects as the driving force for autonomous IoT. In the future the Internet of Things may be a non-deterministic and open network in which auto-organized or intelligent entities (Web services, SOA components), virtual objects (avatars) will be interoperable and able to act independently (pursuing their own objectives or shared ones) depending on the context, circumstances or environments.
Embedded intelligence presents an "AI-oriented" perspective of Internet of Things, which can be more clearly defined as: leveraging the capacity to collect and analyze the digital traces left by people when interacting with widely deployed smart things to discover the knowledge about human life, environment interaction, as well as social inter connection and related behaviors.
Architecture
The system will likely be an example of event-driven architecture,bottom-up made (based on the context of processes and operations, in real-time) and will consider any subsidiary level. Therefore, model driven and functional approaches will coexist with new ones able to treat exceptions and unusual evolution of processes (Multi-agent systems, B-ADSc, etc.).
In an Internet of Things, the meaning of an event will not necessarily be based on a deterministic or syntactic model but would instead be based on the context of the event itself: this will also be a semantic web. Consequently, it will not necessarily need common standards that would not be able to address every context or use: some actors (services, components, avatars) will accordingly be self-referenced and, if ever needed, adaptive to existing common standards (predicting everything would be no more than defining a "global finality" for everything that is just not possible with any of the current top-down approaches and standardizations). Some researchers argue that sensor networks are the most essential components of the Internet of Things.
Building on top of the Internet of Things, the Web of Things is an architecture for the application layer of the Internet of Things looking at the convergence of data from IoT devices into Web applications to create innovative use-cases.
Complex system
In semi-open or closed loops (i.e. value chains, whenever a global finality can be settled) it will therefore be considered and studied as a Complex system due to the huge number of different links and interactions between autonomous actors, and its capacity to integrate new actors. At the overall stage (full open loop) it will likely be seen as a chaotic environment (since systems have always finality).
Size considerations
The Internet of objects would encode 50 to 100 trillion objects, and be able to follow the movement of those objects. Human beings in surveyed urban environments are each surrounded by 1000 to 5000 trackable objects.
Space considerations
In an Internet of Things, the precise geographic location of a thing—and also the precise geographic dimensions of a thing—will be critical. Open Geospatial Consortium, "OGC Abstract Specification" Currently, the Internet has been primarily used to manage information processed by people. Therefore, facts about a thing, such as its location in time and space, have been less critical to track because the person processing the information can decide whether or not that information was important to the action being taken, and if so, add the missing information (or decide to not take the action). (Note that some things in the Internet of Things will be sensors, and sensor location is usually important. Mike Botts et al., "OGC Sensor Web Enablement: Overview And High Level Architecture") The GeoWeb and Digital Earth are promising applications that become possible when things can become organized and connected by location. However, challenges that remain include the constraints of variable spatial scales, the need to handle massive amounts of data, and an indexing for fast search and neighbour operations. If in the Internet of Things, things are able to take actions on their own initiative, this human-centric mediation role is eliminated, and the time-space context that we as humans take for granted must be given a central role in this information ecosystem. Just as standards play a key role in the Internet and the Web, geospatial standards will play a key role in the Internet of Things.
A Basket of Remotes
According to the CEO of Cisco, the remote control market is expected to be a $USD 19 trillion market. Many IoT devices have a potential to take a piece of this market. Jean-Louis Gassée (Apple initial alumni team, and BeOS co-founder) has addressed this topic in an article on Monday Note, where he predicts that the most likely problem will be what he calls the "Basket of remotes" problem, where we'll have hundreds of applications to interface with hundreds of devices that don't share protocols for speaking with one another.
There are multiple approaches to solve this problem, one of them called the "predictive interaction",where cloud or fog based decision makers will predict the user's next action and trigger some reaction.
For user interaction, new technology leaders are joining forces to create standards for communication between devices. While AllJoyn alliance is composed the top 20 World technology leaders, there are also big companies that promote their own protocol like CCF from Intel.
This problem is also a competitive advantage for some very technical startup companies with fast capabilities.
AT&T Digital Life provides one solution for the "basket of remotes" problem. This product features home-automation and digital-life experiences. It provides a mobile application to control their closed ecosystem of branded devices;
Nuve has developed a new technology based on sensors, a cloud-based platform and a mobile application that allows the asset management industry to better protect, control and monitor their property.
Muzzley motd controls multiple devices with a single application and has had many manufacturers use their API to provide a learning ecosystem that really predicts the end-user next actions. Muzzley is known for being the first generation of platforms that has the ability to predict form learning the end-user outside World relations with "things". 'my shortcut' is an approach that also includes a set of already-defined devices and allow a Siri-Like interaction between the user and the end devices. The user is able to control his or her devices using voice commands;
Realtek "IoT my things" is an application that aims to interface with a closed ecosystem of Realtek devices like sensors and light controls.
Manufacturers are becoming more conscious of this problem, and many companies have begun releasing their devices with open APIs. Many of these APIs are used by smaller companies looking to take advantage of quick integration.
Sub systems
Not all elements in an Internet of Things will necessarily run in a global space. Domotics running inside a Smart House, for example, might only run and be available via a local network.
Frameworks
Internet of Things frameworks might help support the interaction between "things" and allow for more complex structures like Distributed computing and the development of Distributed applications. Currently, some Internet of Things frameworks seem to focus on real time data logging solutions like Jasper Technologies, Inc. and Xively (formerly Cosm and before that Pachube): offering some basis to work with many "things" and have them interact. Future developments might lead to specific Software development environments to create the software to work with the hardware used in the Internet of Things. Companies such as ThingWorx,Raco Wireless,nPhase and Carriots and EVRYTHNG are developing technology platforms to provide this type of functionality for the Internet of Things.
The XMPP standards foundation XSF is creating such a framework in a fully open standard that isn't tied to any company and not connected to any cloud services. This XMPP initiative is called Chatty Things. XMPP provides a set of needed building blocks and a proven distributed solution that can scale with high security levels. The extensions are published at XMPP/extensions
The independently developed MASH IoT Platform was presented at the 2013 IEEE IoT conference in Mountain View, CA. MASH’s focus is asset management (assets=people/property/information, management=monitoring/control/configuration). Support is provided for design thru deployment with an included IDE, Android client and runtime. Based on a component modeling approach MASH includes support for user defined things and is completely data-driven.

Thursday, March 10, 2011

The Star Metro
Home > Metro > Central
Thursday March 10, 2011

CAR ALARM WITH A DIFFERENCE

By CHRISTINA LOW
christinalow@thestar.com.my

Photos by ABDUL HALIM


EVERY TIME R. Ravindran goes out to a shopping mall with his family, one thing he will not forget to do is to send a text message to the four-wheeler, just to know it is safe.

He will then receive a reply in less than a minute informing him of the exact location of the car.

It may sound crazy but for Ravindran, the SMS is the best first-hand news he can get about his vehicle.

The 40-year-old, who is a trained chartered accountant, has a huge passion for security devices after working for a local manufacturer for close to 13 years.



High-tech: Ravindran with the locally made Immo-Com car security device.

During the stint, Ravindran said the company made power windows, car alarms, reverse sensors and central locking systems before supplying it to local car manufacturers.

“When I left the company in 2009 to start one of my own, the home alarm systems was one of our line of products,

“However coming from a car alarm system background, I have always wondered how I can integrate both home and car systems,” he said.

In the same year, he started a project to put together a car alarm system which he felt could be the answer to his problems.

“We have all kinds of security systems for cars in the market. Some are so loud when triggered off and no one knows if your car is being taken away or the system is faulty,” said Ravindran, who is the director of Secure Intellect Technology Sdn Bhd.

Often, no one bothers about it and the owner would probably end up being the last person to find out.

Explaining how the simple system works, Ravindran said: “When your alarm is triggered, the system which runs on a GPS and a phone SIM card would automatically send you a SMS informing you that the car’s alarm has been set off.

“Accompanying the message is the location of the car and also details informing if the car’s engine is switched on or otherwise,” he said.

If the thief stealing your car drives off with the car, the owner can continue sending SMSs to his car and would get replies informing him of its location.

He said he could opt to immobilise the car by typing ‘PW1234;IMMO=ON’ to the car’s phone number.

During the interview, Ravindran said any phone could activate the immobiliser of the car if they knew the password and phone number.

“You should not tell anyone the SIM card number and password.

“However, you can let two family members know the number and password so they too can be informed about the car when the alarm is triggered,” he said.

To demonstrate how the system works, Ravindran showed us the trick on a different cellphone, while driving.

The aim was to immobilise his car and hardly a minute after sending the short SMS, his car came to a halt.

He then sent another SMS ‘PW1234;IMMO=OFF’ and he could restart the engine without a glitch.

“This system is not only simple and easy to use but it informs the car owner directly and is also useful for the police to track the whereabouts of the car,” he said.

The locally produced Immo-Com device by Secure World is small enough to fit into the palm and is currently available at a promotional price of RM1,848 with one year warranty.

Installation takes about 90 minutes and the company has appointed dealers in various parts of the country such as Kelantan, Terengganu, Pahang, Perak, Malacca, Kuala Lumpur and Selangor.

Ravindran said the device could also be transferred to another car if one decided to change their vehicles.

For details on the product, call Ravindran at 019-232 2911 or visit www.sit2u.com.my.
---------------------------------------

Nik Zafri :

I look into this article and immediately got so interested in it. I sms Mr. Ravindran expressing my interest to republish this article online. Soon, Mr. Ravindran himself returned my call, very nice chap. I told how impressed I am with this statement :

“We have all kinds of security systems for cars in the market. Some are so loud when triggered off and no one knows if your car is being taken away or the system is faulty,”

I hope soon, the system will be interfaced with the PDRM or JPJ so that it makes their job easier as well.


---------------------------------
I then visited the website and got hold of this :



Protect your vehicle and love ones with IMMO-COM. It gives you peace of mind, as your car is always with you wherever you go. It protects your car by communicating and immobilizing through these features:

* INFORM
You will be notify immediately when your car is tampered or break-in.

* STOP
Immobilize your car through your mobile phone wherever you are.

* STATUS
You can check the engine status of your car anytime, anywhere.

* LOCATE
You can track and locate your car through GPS System.




---------------
Nik Zafri :

By the looks of it, I think it can go more than putting the car into a halt, it may also sound the horns, lock the door or probably loud voice alert "You are not an authorized user" followed by an alarm or perhaps automatic dial to PDRM or JPJ.

Kinda like "Knightrider" - I told Mr. Ravindran and he chuckled.

I hope soon, the system will be interfaced with the PDRM or JPJ so that it makes their job easier as well.

And the price is OK by Malaysian standards - I think lower than the current GPS mechanisms - it's worth to try..

Wednesday, June 11, 2008

PENGENALAN ASAS KEPADA BIOTEKNOLOGI, TEKNOLOGI NANO DAN KEPINTARAN BUATAN - Kajian Ringkas Nik Zafri Abdul Majid 2005

BIOTEKNOLOGI

Definisi dan cakupan bioteknologi amatlah luas sekali. Mungkin jika kita mendengar istilahnya yang bunyinya begitu saintifik, ramai antara kita yang tidak menceburi bidang ini merasakannya ianya tidak begitu mustahak padahal hidupan manusia sendiri berkaitan rapat dengan bioteknologi.

Bioteknologi berkait dengan semua hidupan organik samada hidupan seni untuk kegunaan proses fermentasi hinggalah kepada kejuruteraan evolusi genetik. Proses bioteknologi melibatkan kedua-dua proses semulajadi dalam kehidupan dan juga proses kajian menerusi makmal.

Di segi tradisinya, kajian dilakukan dengan membuat pilihan ke atas haiwan atau pun tumbuhan. Cara proses kajian berkait genetik umpamanya pembiakan dilakukan membabitkan keadaan yang terkawal seperti suhu, bahan-bahan yang digunakan, kebersihan persekitaran, makanan dan sebagainya kerana semua ini mempengaruhi keputusan atau hasil kajian samada kejayaan berjaya dicapai atau pun tidak.

Kejayaan bioteknologi telah banyak melahirkan kaedah/teknik pertanian dan pembiakan haiwan yang maju umpamanya kacukan baka, pengklonan, hidroponik, aeroponik dan banyak lagi. Dikatakan walaupun teknologi ini baru kedengaran pada kita hari ini, teknologi ini sebenarnya telah lama digunakan sebelum dipopularkan kembali oleh saintis-saintis hari ini. Umpamanya perlakuan multigene untuk penghasilan intrinsik dan ketahanan hidup melibatkan pembiakan selektif yang beroperasi ke atas semua organisma set yang lengkap dengan gen yang selaras manakala kejuruteraan genetik pula terhad kepada pemindahan 3-4 gen dengan kawalan yang kecil di mana gen yang baru dimasukkan. Bagi perlakuan agronomi, cara pembiakan tradisi masih mendapat sambutan. Lain-lain bioteknologi bukan genetik melibatkan kegunaan organisma mikro untuk memudahkan proses penapaian bagi menghasilkan keju, enzim untuk sabun dan sebagainya. Dari sini juga lahirnya idea untuk menggunakan radiasi dan kimia dan terhasillah mutagenesis yang menghasilkan pertukaran genetik dalam bakteria samada dari perlakuannya mahupun jumlahnya yang amat berguna untuk menjadikan sesuatu produk lebih baik dan bermutu tinggi.

Saintis hari ini kini sedang mencuba untuk mengelakkan pindaan terhadap gen dan menggunakan kaedah bioteknologi moden umpamanya antibodi monoklon bagi ikatan protin yang digunakan untuk aplikasi diagnostik seperti ujian mengandung dan sebagainya. Mungkin ramai yang berpendapat bahawa pindaan terhadap gen adalah meminda sesuatu semulajadi atau cubaan menentang Pencipta sementara masih ada alternatif untuk meminimakan pindaan yang drastik terhadap gen.

Teknologi pengklonan mamalia juga telah mendapat banyak tentangan. Proses ini melibatkan penanaman nukleus dari sel dewasa ke dalam telur yang telah dibuang nukleusnya untuk memudahkan telur berkenaan berkembang dengan cara yang berganti-ganti. Pengklonan sebenarnya tidak melibatkan pindaan gen atau perlakuannya tetapi hanya sekadar pemindahan nukleus yang mengandungi maklumat lengkap genetik.

Walaubagaimanapun, apa yang dapat dipelajari dari pemindahan nukleus ialah teknologi yang berkaitan dengan prospek manipulasi tiruan dan pemindahan genetik satu hidupan ke satu hidupan yang lain secara harmoni. Umpamanya asid amino yang membentuk protin berkaitan rapat dengan kejadian manusia. Telah kedapatan di pasaran produk-produk ubat-ubatan yang sangat mahal tetapi mengandungi kandungan asid amino yang dikatakan mampu menguatkan protin dalam tubuh. Kemungkinan kejuruteraan genetik akan dapat membantu bidang perubatan moden amatlah tinggi sekali umpamanya penggantian gen yang rosak dengan gen yang baik kondisinya. Buat masa ini, kejuruteraan genetik yang melibatkan manusia hanya dilakukan menggunakan sel yang tidak reproduktif atau somatik yang diambil dari tulang.
Bioteknologi dan Makanan

Walaupun dunia dipenuhi dengan makanan namun terdapat kira-kira 700 juta yang masih kekurangan makanan bernutrien dan angka ini terus meningkat dari hari ke hari selaras dengan pertambahan populasi dunia.

Krisis makanan sedunia biasanya disebabkan oleh faktor-faktor force-majeur seperti:

- peperangan
- Dasar ekonomi dan kewangan sesebuah negara yang mungkin tidak mampu diterima oleh negara pengekspot makanan umpamanya cukai impot, taraf perintis, pasaran modal, kuota dsb., - ini juga pengaruh kepada naik turunnya harga makanan dan kemungkinan jika peningkatan pendapatan individu yang tidak selaras akan menyebabkan kurangnya kuasa belian terhadap makanan yang berkualiti,
- bencana alam
- kekurangan kawasan (tanah) kerana dibangunkan kembali untuk industri lain seperti perumahan - walaupun bioteknologi mampu meminimakan masalah ruang tetapi adalah lebih baik jika ruangan yang luas untuk sektor makanan dimaksimakan.

Kerajaan Malaysia telah mengambil langkah ke hadapan untuk memastikan negara tidak akan terlibat dalam krisis makanan menerusi dwi galakan kepada sektor pertanian dan bioteknologi. Kita bersyukur kerana kita tidak menghadapi masalah krisis makanan, dasar ekonomi dan kewangan masih antara yang terbaik (jika dibandingkan dengan negara-negara lain), bencana alam juga kurang dan kita masih mempunyai kawasan tanah atau ruang yang mencukupi untuk menjadikan bioteknologi sebagai pemangkin kemajuan sektor pertanian selain pengekalan cara tradisional.

TEKNOLOGI NANO DALAM INDUSTRI I.C.T.

Atom adalah pembina utama sesuatu produk di mana setiap produk mempunyai aturan atomnya yang tersendiri. Sekiranya atom dapat diatur kembali contohnya dalam butiran pasir termasuk silica dan sebagainya, ianya akan berubah menjadi chip komputer. Manakala jika atom dalam arang batu dapat diubah, ianya akan menjadi berlian.

Contoh manipulasi atom yang baik dalam sektor pembinaan ialah konkrit pratuang dan pembentukan kembali besi atau karbon. Ianya seperti membina modul menggunakan blok lego. Teknologi Nano adalah sebahagian daripada teknologi-teknologi yang kita lihat hari ini di mana ianya melibatkan manipulasi atom dan molekul dalam sesuatu bahan untuk membina bahan yang lain. Dalam sektor pembikinan barang-barang bersabit dengan ICT contohnya industri chip mikro, kita dapati teknologi nano digunakan secara meluas. Teknologi nano akan terus berkembang dan pastinya akan membawa kegunaan kepada manusia di masa hadapan.

Akhir-akhir ini, ramai yang menjadikan teknologi nano sebagai sebahagian daripada kajian mereka. Teknologi nano sering dikaitkan dengan karektoristik yang kurang daripada 1,000 nanometer. Contohnya bidang litografi yang dapat menghasilkan keluasan garisan yang kurang dari 1 mikron. Tanpa litografi, maka mungkin wujudnya komputer yang kita gunakan hari ini kerana tiadanya industri semikonduktor dan sirkit bersepadu. Kini litografi telah mencapai tahap yang begitu maju dalam industri bersabit dengan ICT.

Teknologi nano akan terus berkembang bagi menjadikan sesuatu bahan lebih mudah dan lebih murah secara keseluruhan.

APAKAH ITU KEPINTARAN BUATAN

Kepintaran buatan (AI) melibatkan sains dan kejuruteraan dalam membina mesin/peralatan yang lebih pintar - umpamanya robotik, automasi dan ICT. Dalam konteks ICT, contohnya penggunaan komputer (terutamanya pengaturcara), apabila kita memasukkan sesuatu kombinasi nombor sambil menekan kekunci ALT, kita akan dapati ianya akan menghasilkan sesuatu symbol ASCII. Ini adalah kefahaman yang paling asas dalam kepintaran buatan dalam konteks komputer - dengan kata lain kita telah mengarahkan komputer menggunakan bahasanya (gabungan kekunci) untuk memperbuat sesuatu bagi menghasilkan keputusan yang dapat kita lihat. (command-based) Ini juga berlaku dalam suasana yang berdasarkan menu-based.

Hari ini, kita dapati komputer dapat dilatih untuk mengecam suara dan dapat menaipkan apa yang kita baca. Sebenarnya komputer telah mendapat input daripada manusia dengan melatihnya menyimpan data yang kita bacakan untuknya. Ibarat kita menggunakan mesin kira, apabila kita menekan sesuatu angka menerusi operasi tolak, bahagi, campur atau kali, kita dapati mesin kira akan memberikan kita satu angka yang tepat. Begitu juga halnya dengan penggunaan mesin basuh yang menggunakan konsep fuzzy logic. Inilah antara penerangan asas untuk memahami takrif 'Kepintaran Buatan' atau 'Artificial Intelligence' di mana sebilangan besar dari kita telah menggunakannya setiap hari samada disedari atau pun tidak.

Dari sinilah, manusia yang bergelar saintis mendapat ilham untuk mengaplikasikan kepintaran buatan ke atas automasi untuk industri (tangan robotik) dan sebagainya. Ianya merupakan satu simulasi kepada situasi sebenar tetapi memerlukan input daripada manusia sendiri untuk mengaturkan simulasi berkenaan. Dalam cereka sains, kita dapati banyak unsur evolusi kepintaran buatan digunakan - contohnya terdapat robot atau android atau teknologi holograf (melibatkan medan kuasa, photon dll) yang interaktif, sebenarnya kesemuanya ini adalah teori evolusi kepada teknologi kepintaran buatan yang kita lihat hari ini. Walaupun mungkin, kita masih belum mampu untuk menghasilkan teknologi yang tinggi sebagaimana dipaparkan dalam siri-siri cereka sains, namun usaha ke arah penghasilan asas telah pun dilakukan di serata dunia termasuk Malaysia (pameran atau pertunjukan atau pertandingan bersabit dengan robotik) Teknologi kepintaran buatan dalam konteks robotik atau bionik atau automasi juga dikaitkan dengan teori heuristik, evolusi neural network',fuzzy logic dan kebangkitan zaman teknologi tanpa wayar yang sedang 'menyerang' rumah-rumah pintar (wireless router, muzik digital, radio internet, VOIP dan Voice Phone dll)

Secara keseluruhannya teknologi kepintaran buatan adalah bertujuan untuk membantu manusia melakukan kerja-kerja yang sukar dilakukan.

KESIMPULAN

Bioteknologi melibatkan manipulasi gen dan Teknologi Nano melibatkan manipulasi atom dan molekul.Kini, terdapat banyak usaha dan penyelidikan dan pembangunan serata dunia untuk mengaplikasikan konsep teknologi nano dan bioteknologi. Dikatakan, apabila manusia berjaya memahami dan mempraktikkan teknologi nano dan bio, mereka akan berjaya pula mengintegrasikannya dalam teknologi kepintaran buatan untuk membantu mereka yang cacat anggota (penggunaan chip organik), teknologi bionik, robotik, evolusi neural-network dan fuzzy-logic dan sebagainya, kita akan menjadi lebih maju di masa hadapan.

Berita Berkaitan Berita Nanotechnology